Científicas argentinas crean “templex”, un sistema que promete revolucionar la matemática
Por Pablo Esteban.
A través de la topología algebraica y la teoría de grafos, el aporte de Gisela Charó y Denisse Sciamarella servirá para resolver un viejo anhelo: comprender el caos. El trabajo fue publicado en la portada de una revista especializada.
Dos científicas del Centro de Investigaciones del Mar y de la Atmósfera (UBA, Conicet) crearon templex: una nueva herramienta matemática, que combina topología algebraica y teoría de grafos, y que por primera vez se anima a lo impensado: comprender cabalmente el caos. El avance, que cuenta con financiamiento del Ministerio de Ciencia, Tecnología e Innovación, fue seleccionado como artículo destacado y publicado en la portada de Chaos, una revista especializada en la materia. En concreto, las investigadoras Denisse Sciamarella y Gisela Charó proponen un nuevo concepto matemático que permitirá, en el corto plazo, el diseño de un software capaz de servir a otros equipos científicos de Argentina y el mundo a resolver problemas bien disímiles: medir la dispersión de un contaminante en un fluido, crear modelos de desarrollo de células tumorales, estimar procesos de mezclado en un reactor, así como el abordaje de un abanico de temáticas en distintas áreas del conocimiento científico.
“La topología fue un invento del matemático Henri Poincaré en el Siglo XIX. Él la definía como ‘una geometría puramente cualitativa cuyos teoremas serían ciertos si las figuras, en lugar de ser exactas, fueran burdamente imitadas por un niño’. La idea central es que dos cosas pueden ser distintas entre sí, pero si una es la deformación de la otra, pues entonces son equivalentes topológicamente”, dice Sciamarella. Y continúa: “Un niño puede dibujar un círculo deformado a tal punto que parezca un triángulo, pero para la topología ambas figuras son la misma cosa. En este sentido, la que nosotros proponemos es una nueva matemática que permite emplear la topología para comprender el caos.”
Para ser comprendido de una manera más sencilla, desde la perspectiva de la especialista, el aporte puede ser pensado a través de metáforas. “Supongamos que hasta el momento, con el sistema anterior, los científicos contaban con una red de autopistas. Nuestro aporte, al crear templex, es que a partir de ahora contarán con una guía que tiene flechas y señales que indican cómo circular por las autopistas”, sostiene. Y completa: “Según el estudio de esa red de autopistas con sentido de circulación es posible advertir cuál es la ley que gobierna un fenómeno determinado”.
Basta con brindar al templex una serie temporal cualquiera, para que este determine de qué tipo de dinámica se trata: la variable observada puede ser la temperatura global de la Tierra, la salinidad medida en un punto determinado del océano, o mismo, una señal de voz. De la misma manera que existe una ley que determina que la energía se conserva; el principio que rige en este caso es que para los sistemas dinámicos determinísticos, la topología no cambia.
Útil para comprender el caos
La definición de caos es caótica: la física lo conceptualiza como “el orden dentro del desorden”, pues, aunque tiene una apariencia aleatoria, en verdad no lo es. El asunto es que el caos, como problema científico, no es correctamente descripto a través de las herramientas matemáticas actuales. Las que existen utilizan teoría de nudos para armar un modelo llamado “template”, pero como los nudos se desarman en más de tres dimensiones, y la mayor parte de los problemas caóticos requieren más de tres dimensiones, el template posee poca utilidad práctica. Christophe Letellier, Profesor de la Universidad de Rouen, coautor del presente trabajo, es especialista en el cálculo de templates para sistemas caóticos de tres dimensiones.
Precisamente, el templex es la invención de Gisela Charó –doctora en Ingeniería (UBA) y becaria posdoctoral del Conicet–, y Denisse Sciamarella –doctora en física (UBA), investigadora del Centre National de la Recherche Scientifique (Francia) y directora adjunta el Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (IFAECI)– con el objetivo de darle una solución a este inconveniente. “Algunos científicos llaman a este problema la maldición de la dimensionalidad”, apunta. El templex es una mezcla de un complex (un complejo, en topología algebraica) y un template. El término es la contracción de estos dos objetos matemáticos que son sus precursores.
“Hasta el momento, en topología del caos se utilizaba teoría de nudos. El problema radicaba en que si el sistema tenía más de tres variables, esto es, más de tres dimensiones, ya no aplicaba”, expresa. En 2001, Denisse Sciamarella comenzó su experticia en este campo a partir de su tesis de doctorado, relacionada al análisis de la estructura topológica de flujos caóticos. Con el tiempo, se volvió una especialista y una referencia en el terreno de la dinámica no lineal (caos) y mecánica de fluidos aplicada a problemas biológicos y geofísicos.
Aplicaciones por todos lados
La dificultad de explicar para qué sirve la matemática radica en su transversalidad. Por ello, ante el interrogante por la funcionalidad, la respuesta general: “sirve para todo”, comenta Sciamarella con entusiasmo. El riesgo de afirmar que algo sirve para todo es que podría no servir para nada. En este afán, la especialista brinda algunos ejemplos que pueden ser de ayuda al momento de desmenuzar la importancia del avance.
A partir de una serie temporal, es posible inferir la topología y a partir de esta, determinar el tipo de ley que gobierna el fenómeno. “En ciencias del clima, existen más de veinte modelos climáticos que se utilizan para realizar simulaciones climáticas y proyecciones climáticas futuras. Si bien todos ellos poseen una formulación basada en las ecuaciones de los fluidos, difieren en varios aspectos: el modelado de aerosoles, la dinámica de la capa de hielo o del océano, entre otros procesos”, plantea. Después sigue con su razonamiento: “Se ha llegado a hablar de una Babel de modelos. ¿Cómo saber con cuál modelo quedarse? ¿Hasta qué punto puede decirse que un modelo es una buena representación de las observaciones? El templex, puede aportar la solución”.
Otra utilidad del templex radica en comparar datos entre sí. Sciamarella lo explica así: “Por ejemplo, cuando se dispone de un conjunto de datos medido por satélites y otro conjunto medido por una boya que está en el océano. Aunque se trate de tecnologías distintas con distinto alcance, si ambas series temporales tienen la misma topología, quiere decir que la información que brindan se asemeja bastante entre sí”. Esto es importante de evaluar si se busca examinar la eficacia de ambos recursos.
Asimismo, se utiliza en un amplio abanico de áreas adicionales: para detectar arritmias cardíacas, para pronosticar el ciclo solar, para el seguimiento de la vegetación en las regiones áridas, para determinar la equivalencia de circuitos electrónicos, en el análisis de modelos ecológicos, en óptica del láser o en acústica. “Cuando comencé a trabajar en topología de caos, la utilicé para caracterizar señales de voz hablada y cantada, y descubrimos que la topología permitía dar cuenta de que el sistema fonador no funciona del mismo modo en los distintos registros vocales, y que aquello que los cantores llaman `pasaje’ de un registro a otro se traduce en un cambio topológico. El conocimiento de estos cambios topológicos puede ser utilizado a la hora de diseñar una prótesis”.
También se reportan usos en un área tan sensible como la oncología. “En medicina, Christophe Letellier, por ejemplo, utilizó templates para estudiar tres poblaciones celulares (células huésped, inmunes y tumorales) y así sugerir nuevas tendencias para entender las interacciones de algunas células tumorales y su entorno”, agrega.
El templex abre un camino que amplía las aplicaciones a sistemas más complejos aún, liberando a estos métodos de la maldición de la dimensionalidad.
Tomado de Página/12 / Foto de portada: Gisela Charó (izq.) y Denisse Sciamarella / Crédito: Guadalupe Lombardo.